jueves, 11 de enero de 2018

Pirámides cuadrangulares en cuatro dimensiones


Estudiamos en una entrada anterior los números piramidales de tres lados en cuatro dimensiones, que se formaban sumando los términos de la sucesión de tetraedros de tres dimensiones y eligiendo las sumas parciales.

Lo puedes consultar en http://hojaynumeros.blogspot.com.es/2017/11/numeros-piramidales-de-cuatro.html


Pirámides cuadrangulares

De la misma forma, si tomamos la sucesión de números piramidales cuadrados de tres dimensiones (ver http://hojaynumeros.blogspot.com.es/2017/05/numeros-piramidales-3-cuadrados.html), podemos ir obteniendo sus sumas parciales.

Estos son los números piramidales cuadrados:

1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455,…
Formamos sus sumas parciales:


1, 6, 20, 50, 105, 196, 336, 540, 825, 1210, 1716, 2366, 3185, 4200, 5440, 6936, 8721, 10830, 13300, 16170, 19481, 23276, 27600,…

Se obtienen así: 1=1, 1+5=6, 1+5+14=20, 1+5+14+30=50,…

Esta será la sucesión de números piramidales cuadrados de cuatro dimensiones. Los nombraremos como PIR4_4(n)

Los tienes publicados en http://oeis.org/A002415

Obtención de la fórmula polinomial

Ya estudiamos este procedimiento en una entrada anterior de esta serie
http://hojaynumeros.blogspot.com.es/2017/09/numeros-figurados-e-interpolacion.html

Consiste en usar la fórmula de interpolación de Newton aplicada a los primeros números naturales. Remitimos a la entrada enlazada para seguir el procedimiento. En primer lugar escribimos los primeros términos 1, 6, 20, 50, 105, 196, 336,… y obtenemos sus diferencias sucesivas de forma automática:


Como las quintas diferencias son nulas, el polinomio interpolador será de cuarto grado. Los coeficientes los tienes en la parte baja en forma de fracción. Así quedaría:

1+5(x-1)+9/2(x-1)(x-2)+7/6(x-1)(x-2)(x-3)+2/24(x-1)(x-2)(x-3)(x-4)

Lo podemos simplificar con wxMaxima:



O en la web de Wolfram Alpha, obteniendo el mismo resultado:


Hay que tener en cuenta que esta expresión es válida si se comienza la sucesión en 1. Podrás encontrar otras distintas cuando el inicio contenga ceros.

La comprobamos, por ejemplo para n=5 y n=6:

PIR4_4(5)=5*6^2*7/12=105
PIR4_4(6)=6*7^2*8/12=4*49=196

Expresión con números combinatorios

Todos los números figurados se pueden expresar mediante números combinatorios de una forma más o menos compleja. En este caso disponemos de dos expresiones



(n+3)(n+2)(n+1)n/12-(n+2)(n+1)n/6=(n+2)(n+1)n((n+3)/12-1/6)=n(n+2)(n+1)^2/12, que coincide con la fórmula obtenida más arriba.

Podemos comprobarlo también con la función COMBINAT de las hojas de cálculo:

Para n=6 tendríamos =2*COMBINAT(9;4)-COMBINAT(8;3)=196

Coincide con el resultado obtenido anteriormente.

Puedes probar también con esta otra:



Así, PIR4_4(7)=COMBINAT(10;4)+COMBINAT(9;4)=336, que es su valor correcto.

No es difícil comprobar la equivalencia de ambas expresiones combinatorias.

En la siguiente imagen del triángulo de Pascal hemos rodeado de círculos estos números combinatorios que sirven de sumandos:



Podeos sumar cada uno con el siguiente y resultarán piramidales cuadrados de 4 dimensiones:

1+5=6;  5+15=20;  15+35=50;  35+70=105;

Interpretación geométrica

Al igual que ocurría con las pirámides triangulares y los triángulos, estos números pueden representar el número de cuadrados que se pueden dibujar en una rejilla cuadrada de n vértices, si sus lados no son paralelos a los de la rejilla. En la imagen hemos representado cuatro de ellos.



Podemos razonar de un modo similar al que usamos con triángulos.

En primer lugar contaremos los cuadrados que se pueden dibujar si sus lados han de ser paralelos a las líneas de la rejilla. Por ejemplo, en la imagen se pueden dibujar 36 cuadrados de lado 1, 25 de lado 2, 16 de 3, y así hasta el cuadrado total que sería uno solo. Por tanto, el número de cuadrados de lados paralelos sería 1+4+9+16+25+36=91.

Resulta ser equivalente a un número piramidal cuadrado de índice 6. En efecto, puedes repasar la definición y fórmulas en

http://hojaynumeros.blogspot.com.es/2017/05/numeros-piramidales-3-cuadrados.html

Dentro de cada cuadrado de lado k en posición paralela se pueden dibujar k-1 cuadrados de los que nos interesan



En el caso del lado seis, podemos acumular los cuadrados según el número de lados, y obtendríamos:

36*0+25*1+16*2+9*3+4*4+1*5=105=PIR4_4(5)

Con cinco lados obtendríamos un resultado similar:

25*0+16*1+9*2+4*3+1*4=50=PIR4_4(4)

La demostración general supone mucho cálculo algebraico que nos da pereza abordar.


No hay comentarios: