lunes, 23 de mayo de 2016

Volvemos a los números arolmar (6) Semiprimos arolmar enlazados


Vimos en la anterior entrada dedicada a este tema

(http://hojaynumeros.blogspot.com.es/2016/04/volvemos-los-numeros-arolmar-5.html)

que cada semiprimo arolmar está determinado por un par de primos cuya media es otro primo. Podíamos intentar enlazar el tercer primo de la terna con un cuarto primo (el menor posible) que también formara un arolmar con el tercero. Según la tabla incluida en la anterior entrada


21=3*7 está enlazado con 133=7*19, con lo que los tres primos 3, 7 y 19 están enlazados con sus medias 5 y 11 y sus números arolmar 21 y 133. El 33=3*11 está enlazado con 253=11*23.

Igual que conjeturamos que a cada primo P le correspondía un arolmar semiprimo cuyos factores primos sumaran 2P, ahora podemos intentar que dado un primo P, encontrar otro primo cuya media con el primero también sea prima. Así, las cadenas de semiprimos arolmar enlazados alcanzarían una longitud infinita.

Hemos implementado esta búsqueda de un segundo primo en hoja de cálculo, con lo que podemos crear cadenas de primos enlazados con media prima entre cada dos consecutivos. Su código es el siguiente:

Public Function proxprimrol(p)
Dim pr, prox
Dim es As Boolean

If Not esprimo(p) Then proxprimrol = 0: Exit Function ‘Si no es primo se devuelve un cero
pr = p + 1 ‘La variable pr busca el siguiente primo válido
es = True ‘Control del WHILE
prox = 0
While es
pr = primprox(pr) ‘Busca los primos siguientes
If esprimo((p + pr) / 2) Then prox = pr: es = False ‘Si la media es prima, lo hemos encontrado
Wend
proxprimrol = prox
End Function

En esta función nos hemos arriesgado a que se entre en un bucle sin fin si no se encuentra el siguiente primo, pero confiamos en la conjetura de que todo primo encontrará su pareja.

En una primera exploración podemos observar que todos los primos se encadenan con otros mayores, y que se forman cadenas que al principio son independientes, pero que al final aparecen términos comunes. En la siguiente tabla están ordenados por columnas:


Calcula mentalmente la media entre dos consecutivos de una misma columna y verás que el resultado es primo: (61+73)/2=67, (109+193/2=151…

Observamos que los primos 3, 5, 11, 13, 31, 37 y 41 inician cadenas independientes (al principio), pero algunas de ellas desembocan en un elemento común. Por ejemplo. El 53 tiene como antecesores el 29 y el 41, ya que (29+53)/2=41, primo, y (41+53)/2=47, también primo. No se incluye el 2 porque su carácter par lo invalida para esta operación.

Otros primos, como el 7, tienen antecedentes, y no inician cadena (ya que (3+7)/2=5, primo).

Elementos primarios

¿Qué números primos no tienen antecedentes? Conocemos por la tabla que parecen no tener el 3, 5, 11 y 13 (luego veremos que no es cierto, pues el 11 sí tiene antecedente 3). A aquellos que no provienen de otros en la cadena les llamaremos primarios. Un número primo será de este tipo si no forma media prima con ninguno de los primos menores que él. Como siempre, resolveremos esta cuestión con una función, que recorra los primos menores que el dado y busque si forman media prima con él. Puede ser esta:

Public Function esprimario(p) As Boolean 
Dim prev
Dim espr As Boolean

If Not esprimo(p) Then esprimario = False: Exit Function
prev = primant(p) ‘comenzamos la búsqueda con el primo anterior
espr = True
While espr And prev > 0
If esprimo((prev + p) / 2) Then espr = False ‘Si aparece media prima, no es primario
prev = primant(prev) ‘seguimos descendiendo en la lista de primos
Wend
esprimario = espr
End Function

Al aplicar esta función nos llevamos una sorpresa: los únicos primarios que resultan son 3, 5, 13 y 37. Hemos buscado en números mayores sin encontrar ningún otro. Los demás poseen un antecedente en la cadena. Si no aparecen claramente en la tabla anterior es porque se construyó con primos de este tipo consecutivos, y no han de serlo. Por ejemplo, un antecedente de 11 es el 3, porque (11+3)/2=7 es primo. Si modificamos ligeramente la función anterior, podemos construir una tabla de antecedentes mayores, los más próximos al primo dado:



Figuran con un cero los elementos primarios. Para quienes se interesen por la programación, adjuntamos su código:

Public Function antec(p)
Dim prev, espr

If Not esprimo(p) Then antec = 0: Exit Function
prev = primant(p)
espr = 0
While espr = 0 And prev > 0
If esprimo((prev + p) / 2) Then espr = prev
prev = primant(prev)
Wend
antec = espr
End Function

Al recorrer la tabla descubrimos algo muy interesante, y es que si formamos cadenas descendentes con cada primo y su antecedente mayor, al final desembocaremos en 3, 5, 13 o 37. Por ejemplo, elegimos un elemento de la tabla, sea el 109. Buscando en la misma iremos descendiendo mediante antecedentes: 109 – 97 – 61 – 13. Otro: 101 – 41 – 17 – 5.

Conjetura: Si se forma una cadena a partir de un número primo insertando en cada tramo el máximo primo que forma media prima con el anterior, el proceso terminará en 3, 5, 13 o 37. 

Esta propiedad divide a los números primos en cuatro clases, según sea el final de su cadena de antecedentes. Estas clases son disjuntas, porque el final es único, y abarcan todos los números primos salvo 3, 5, 13 o 37 o bien otro mayor que se descubra algún día como contraejemplo de la conjetura. Aquí las tienes:



La primera está formada por todos los primos que se encadenan hasta el 3, y son todos del tipo 4K+3. Las dos siguientes desembocan en 5 y 13 respectivamente. Su tipo es 4K+1. La cuarta clase, sorprendentemente, sólo está formada por el número 37. Ningún primo superior parece terminar su serie de antecedentes en el 37

Como observación empírica, destacamos que las diferencias entre términos en la primera clase son menores (en promedio) que las de la segunda y las de esta con la tercera.

Si a cada elemento de estas cuatro clases le calculamos la media con su antecedente, no aparecen regularidades en los tipos 4K+1 y 4K+3.

Semiprimos arolmar maximales

Si en las clases anteriores multiplicamos cada primo con su antecedente, resultan números arolmar semiprimos maximales, es decir, los mayores engendrados por una media prima.



La cuarta clase no puede producir semiprimos. En la tabla tienes los primeros en las tres primeras clases. Comprobarás que no están todos los arolmar semiprimos.

Al igual que los primos arolmar presentaban una correspondencia biyectiva con los números primos (ver entrada anterior), y eran elementos minimales, esto no se da con los maximales, pues no todo doble de un número primo se puede descomponer en un primo sumado con su antecedente.

Grado de equilibrio en un número arolmar

Las ideas que hemos estado manejando, de primos arolmar y semiprimos maximales podrían concretarse en un índice entre 0 y 1 que midiera el grado de equilibrio existente entre los dos primos constituyentes de un semiprimo arolmar. El cálculo que nos parece más adecuado es el del cociente entre el primo menor y el mayor. Así, los semiprimos maximales tendrán un índice cercano a 1, y los primos arolmar presentarán un valor pequeño. Aquí tienes los índices de los primeros semiprimos arolmar:


Entre los semiprimos arolmar menores que 10000 el más equilibrado (maximal en su clase de suma de factores 146) es el 5293=67*79, con una media prima de 73 y el más desequilibrado 9993=3*3331, de media prima 1667.


jueves, 12 de mayo de 2016

Rachas de dígitos


En Combinatoria es interesante el problema de las rachas, conjuntos de elementos consecutivos iguales. Por ejemplo, el conjunto AABBCDDDDEE posee cinco rachas; AA, BB, C, DDDD y EE. No se impone ninguna condición a la longitud de cada racha.

Aquí estudiaremos algunas rachas de dígitos que puede presentar un número entero. Distinguiremos tres tipos con sus estadísticas correspondientes y después particularizaremos en algunos casos, como primos, cuadrados o triangulares.

Tipos de racheado

Un número puede presentar los dígitos agrupados, es decir, con rachas todas de longitud mayor que 1, como pueden ser 3366677 o 112222. Le llamaremos número de tipo 1, o con “dígitos agrupados”.

Puede ocurrir que ningún dígito se agrupe con el siguiente, que equivale a afirmar que todas las rachas tienen longitud 1, como en 345643. Obsérvese que no se prohíbe que los dígitos se repitan, siempre que no sean consecutivos. Serán estos números los del tipo 2, o de “dígitos aislados”

Los restantes números presentarán rachas de longitud 1 y otras mayores, como en el caso de 1442 o 54322111. Les asignaremos el tipo 3, que es el menos interesante.

Independientemente de consideraciones combinatorias, podemos evaluar de forma aproximada la frecuencia que presenta cada uno de los casos. Usaremos una función en Visual Basic de hoja de cálculo, que, por su relativa complejidad, explicamos al final de la entrada.

El algoritmo que usa funciona en dos fases:

(1) Búsqueda de las rachas existentes entre los dígitos del número entero. En el listado del final puedes ver que se almacenan en una matriz r.

(2) Estudio de la longitud mínima y máxima de racha existente en el número.
Si la mínima longitud no es 1, los dígitos se presentan agrupados, y el entero será de tipo 1. Si la máxima es 1, no habrá agrupamientos, y el tipo será 2. Los restantes ejemplos serán de tipo 3.

Si te apetece, sigue estas fases en el listado VBA del final.

Frecuencias de los tipos

Mediante la función citada  y un contador adecuado, hemos observado que las frecuencias en los distintos intervalos son bastante parecidas a las de la tabla, obtenida en el intervalo (10000, 100000)



Se observa que son muy escasos los de tipo 1, con todos los dígitos agrupados, un 0,19%, los más frecuentes los del tipo 2, con dígitos aislados, con un 65,61%, quedando los del tipo mixto en una frecuencia intermedia del 34,20%. En otros intervalos las frecuencias son semejantes, ya que están basadas en propiedades combinatorias.

Justificar estas frecuencias puede resultar complejo, pero en el caso del tipo 1 no es difícil. Son 171 porque de dos cifras los únicos agrupados son 11, 22, 33,…99. Si le añadimos una cifra más, deberá ser idéntica a la última, luego, seguirán siendo 9: 111,222,…,999. Al llegar a cuatro cifras disponemos de dos caminos para construir los números de tipo 1: O bien añadimos dos cifras iguales por la derecha a los de dos cifras (incluido el cero), con lo que tendríamos 9*10=90 casos, como 1199, 2200,… o bien las añadimos por la izquierda (sin el cero), lo que daría 9*9=81 casos. Sumamos y obtenemos 90+81=171, que es lo que nos da la estadística.

En general, para una racha existen 9 posibilidades si ignoramos el 0. Para dos, 9*9, ya que ambas han de contener dígitos distintos, y para tres rachas, 9*9*9=729. Con una hoja nuestra sobre Combinatoria hemos calculado el número de rachas de cada tipo hasta 7 cifras, quedando esta tabla:



Todas las cantidades están comprobadas: 9 números de tipo 1 de dos cifras, 9 de tres, 90 de cuatro, 171 de cinco, 981 de seis y 2520 de siete.

¿Presentarán los distintos tipos de números frecuencias parecidas? Por ejemplo, ¿existirán más rachas con longitud superior a 1 en los cuadrados?¿y en los primos?...Nos dedicaremos, en plan lúdico, a estudiar diversos casos y observar, si existen, variaciones apreciables en las frecuencias.

Los cuadrados

Por este carácter informal que queremos darle a este estudio, nos limitaremos en todos los casos al intervalo (1, 100000), ya que con él basta para detectar curiosidades.

En ese intervalo sólo aparece el cuadrado 7744=88^2, y las frecuencias son



Prácticamente coinciden con el caso general. No aparece ningún otro cuadrado de ese tipo entre 1 y 500000. Estás invitado a buscar uno. Por cierto, si lo encuentras, deberá terminar en 00 o 44. Razónalo si te apetece.

Los primos

Establecemos el mismo intervalo, para ver si tampoco en este caso se aprecian diferencias importantes. Y no, resultan casi iguales a las anteriores:



Los 15 primos encontrados son: 11, 11177, 11777, 22111, 22277, 22777, 33311, 33377, 44111, 44777, 55333, 55511, 77711, 77999 y 88811. Como ves, son muy atractivos. Puedes ver más en http://oeis.org/A034873

Como en el caso de los cuadrados, sólo unas terminaciones son válidas: 11, 33, 77, 99, como es fácil entender.

Otros casos

Ya vamos sospechando que las frecuencias variarán poco. Lo vemos:

Triangulares

En este caso aumentan algo las frecuencias de tipo 1 y 2 en detrimento del 3:



Los cuatro triangulares de tipo 1 son muy sugestivos: 55, 66, 666, 2211, Tienes más en http://oeis.org/A116055

Oblongos

Como estos números son los dobles de los triangulares, presentan frecuencias similares, también con ligero predominio de los tipos 1 y 2 respecto al conjunto de todos los números.

En el intervalo (1,100000) sólo aparecen tres de tipo 1: 1122=33*34, 4422=66*67 y 9900=99*100. No están publicados los siguientes. Si te atreves…

Pentagonales

Aparecen tres de tipo 1:22, 8855 y 55777.

Pitagóricos

¿Qué longitudes de hipotenusas de triángulos de lados enteros aparecerán de tipo 1?

De este tipo aparecen muchos más, pues estarían entre ellos algunos múltiplos adecuados de 55, 111 y 100, que presentan rachas de al menos dos elementos. Estos son los primeros, con sus correspondientes catetos:



Aquí lo dejamos. Podemos analizar algunos más, pero vemos que las proporciones no cambian mucho. Es tan imprevisible la aparición de las cifras en los cálculos previos, que al reunir las frecuencias se llega a resultados muy similares.

Aquí tienes una tabla resumen:



ANEXO

Función para encontrar el tipo de agrupamiento de dígitos

Public Function tipoagrupa(n) 
Dim i, t, nr, l, maxr, minr
Dim r(20) ‘Esta variable contendrá las rachas
Dim sr$, c$, d$

sr$ = Str$(n)
sr$ = Right$(sr$, Len(sr$) - 1) + "$" ‘Convierte el número en un string adecuado
nr = 0
maxr = 1: minr = 1000 ‘Máxima y mínima longitud de racha
For i = 1 To 20: r(i) = 0: Next i
i = 1
l = Len(sr$)
While i < l ‘La variable i recorre los dígitos
nr = nr + 1
r(nr) = 1
c$ = Mid$(sr$, i, 1)
d$ = Mid$(sr$, i + 1, 1)
While c$ = d$ ‘Un dígito es igual al siguiente. Hay racha mayor que 1
r(nr) = r(nr) + 1
i = i + 1
c$ = Mid$(sr$, i, 1)
d$ = Mid$(sr$, i + 1, 1)
Wend
If r(nr) > maxr Then maxr = r(nr) ‘Toma nota de la racha máxima
If r(nr) < minr Then minr = r(nr) ‘Toma nota de la racha mínima
i = i + 1
Wend

t = 3 'En principio suponemos que el tipo es 3, caso mixto
If minr > 1 Then t = 1 'Tipo 1. Todos agrupados, porque las rachas son mayores que 1
If maxr = 1 Then t = 2  'Tipo 2. Todos aislados y rachas unitarias
tipoagrupa = t
End Function

miércoles, 4 de mayo de 2016

“Palprimos” (primos palindrómicos)

Tomamos la palabra palprimo directamente del inglés, pero si te apetece, nómbralos como primos palindrómicos.

Según se deduce del nombre, los palprimos son números primos capicúas o palindrómicos (nos limitaremos al sistema de numeración en base 10 por ahora), es decir, que se leen igual de izquierda a derecha que de derecha a izquierda.

Los números de una sola cifra se suelen considerar palindrómicos (en realidad, cumplen la definición), por lo que es fácil entender que los primeros palprimos son

2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 10301, 10501, 10601, 11311, 11411, 12421, 12721,…
(https://oeis.org/A002385)

Para identificarlos con hoja de cálculo necesitaremos la función ESPRIMO y la ESCAPICUA. Disponemos de las dos en nuestra colección, por lo que nos limitaremos a copiarlas aquí.

Public Function esprimo(a) As Boolean
Dim n, r
Dim es As Boolean

'Devuelve true si es primo.
es = False
If a = Int(a) Then  ‘Ha de ser entero
If a = 1 Then es = False ‘Casos particulares
If a = 2 Then es = True
If a > 2 Then
If a / 2 = Int(a / 2) Then ‘Descarta los pares
es = False
Else
    n = 3: es = True: r = Sqr(a) ‘Busca posibles divisores
    While n <= r And es = True
    If a / n = Int(a / n) Then es = False ‘Si se encuentra un divisor se declara compuesto
    n = n + 2
    Wend
End If
End If
End If
esprimo = es

End Function


Public Function escapicua(n) As Boolean
Dim l, i, k
Dim c As Boolean
Dim auxi$

  'Convierte el número en texto para lograr más rapidez. Devuelve VERDADERO si es palindrómico o capicúa
  
auxi = haztexto(n) ‘Se puede usar la función STR$ del Basic
l = Len(auxi)
If l < 2 Then
escapicua = False
Else
c = True
i = 1
k = Int(l / 2)
While i <= k And c
  If Mid(auxi, i, 1) <> Mid(auxi, l - i + 1, 1) Then c = False ‘Va comparando cada dígito con su simétrico
  i = i + 1
  Wend
End If
escapicua = c
End Function

Con estas dos funciones podemos encontrar palprimos en cualquier intervalo, contarlos u operar con ellos. Por ejemplo, con esta rutina podemos destacar los existentes en un intervalo:

Sub buscapalprimos()

Dim i,j
i = ActiveWorkbook.Sheets(1).Cells(6, 7).Value ‘Suponemos que el intervalo está
j = ActiveWorkbook.Sheets(1).Cells(6, 8).Value ‘alojado en las celdas G6 y H6.

fila = 15 ‘Inicio del listado

For i = j To l
If esprimo(i) And escapicua(i) Then
ActiveWorkbook.Sheets(1).Cells(fila, 6).Value = i ‘Se presenta e incrementamos la fila
fila = fila + 1
End If
Next i
End Sub

Aquí tienes el listado de los palprimos comprendidos entre 10000 y 11000:

10301
10501
10601

Como ves, muy pocos. Entre 1000000 y 1100000 sólo encontramos estos:

1003001
1008001
1022201
1028201
1035301
1043401
1055501
1062601
1065601
1074701
1082801
1085801
1092901
1093901

Antes de seguir adelante, quizás te hayas percatado de que no existen palprimos con un número de cifras par, porque entonces serían múltiplos de 11, y no primos, como le ocurre a 1771, que es igual a 7*11*23. Así que siempre nos referiremos a un número impar de cifras.

Se ha conjeturado que existen infinitos primos palídrómicos. Unos de los mayores encontrados es


(Tomado de Wikipedia)

Entre los mayores conocidos se encuentra el número de Belfegor, 1000000000000066600000000000001, llamado así por sus referencias al número de la bestia, 666.

La anterior rutina para destacar palprimos en un intervalo se puede transformar en una función que los cuente simplemente, sin tener que mostrarlos. Su estructura sería muy similar:

 Public Function cuentapalprimos(m, n)

Dim i, c
c = 0
For i = m To n
If esprimo(i) And escapicua(i) Then c = c + 1
Next i
cuentapalprimos = c
End Function

Con esta función comprobamos que entre 10000 y 11000 existen tres, que son los que presentamos arriba, y entre 1000000 y 1100000, los catorce reseñados.

Con un poco de paciencia se puede obtener el número de palprimos para cada número de cifras: De tres cifras existen 15, de cinco 93 y de siete 668. El resto requiere de otras herramientas. Tienes los datos en http://oeis.org/A016115

Suma de inversos

Se ha comprobado que la suma de inversos de los primeros palprimos converge a una constante cuyos primeros decimales son 1.32398… Pondremos a prueba la capacidad de nuestra hoja de cálculo: buscaremos los primeros con la rutina presentada más arriba, hallaremos sus inversos y posteriormente la suma de estos. Como la tabla resultará larga, copiaremos sólo los primeros y últimos términos:





Podíamos seguir con más cifras, pero ya vemos la tendencia a la constante límite. Con hoja de cálculo es preferible dejarlo aquí.

Hemos probado con los inversos de los cuadrados y ha aparecido una convergencia más fuerte (como era de esperar) hacia la constante 0,43008339502. Puedes probar otras posibilidades.