Este blog es un complemento natural de mi página http://www.hojamat.es. Por ello, se dedicará a los temas numéricos tratados con Hoja de Cálculo y a la estructura y prestaciones de esta. Su nivel será elemental o medio, y su orientación lúdica e investigadora.
lunes, 29 de septiembre de 2008
Dándole vueltas (1)
martes, 23 de septiembre de 2008
¿En qué terminan los números triangulares?
“Los números triangulares, expresados en base decimal, no pueden terminar en 2, 4, 7 ó 9”
La metodología de las webquest se adapta muy bien al uso de las hojas de cálculo y a una buena atención a la diversidad. La afirmación anterior constituye un punto de partida que admite la organización de una webquest con distintos itinerarios de aprendizaje según los niveles del alumnado.
Se puede comenzar con la frase de arriba, y organizar una webquest para entender bien su significado y los fundamentos de esa afirmación. Incluimos a continuación algunos pasos que se podrían seguir:
(a) Definición de número triangular
(a1) Para el alumnado más aventajado, se sugerirá alguna búsqueda de carácter histórico sobre estos números.
(a2) Los estudiantes con dificultades pueden copiar imágenes de números triangulares y pegarlas en un documento.
(b) Fórmula de los números triangulares
Una vez conseguida la fórmula T(n)=n(n+1)/2, se construye una tabla de números triangulares con una hoja de cálculo.
(b1) Este paso admite una rama de profundización consistente en buscar en la red propiedades de los números triangulares y experimentarlas con la misma hoja de cálculo. También se puede intentar generarlos por recurrencia: T(n+1) = T(n)+n+1
(b2) Una rama de consolidación del aprendizaje consistiría en aplicar esa fórmula sin el uso del ordenador y reproducir en papel las operaciones que se han efectuado en la hoja de cálculo.
(c) Terminación de los números triangulares
(c1) Una actividad de perfeccionamiento consistiría en usar la propiedad de que “si tomo ocho veces un número triangular y después sumo 1, resulta un cuadrado”. Se estudian las terminaciones de los cuadrados impares, se les quita una unidad y se discute su cociente entre 8.
(c2) Para el alumnado que necesite consolidar lo aprendido, se puede organizar el cálculo de números triangulares grandes para comprobar sus terminaciones.
(d) Presentación de resultados
martes, 16 de septiembre de 2008
Cuadrados en progresión aritmética (II)
Esto nos da un procedimiento de generación de ternas de cuadrados: Elegimos cualquier entero p y buscamos un número par h cuyo cuadrado sea divisible entre p, y mediante la fórmula (1) calculamos n
Ejemplo: p=5, h=10, n=100/10 + 10 + 5 = 25; (n+h)=35: (n-k)=25-10-5*2=5.
Por tanto, los cuadrados en progresión aritmética buscados son: 25, 625 y 1225.
sábado, 13 de septiembre de 2008
Cuadrados en progresión aritmética (I)
No es difícil encontrar ternas de cuadrados perfectos que estén en progresión aritmética, tales como 1, 25 y 49, o 4, 100 y 196. ¿Cómo podríamos encontrar más ternas con una hoja de cálculo? Se podría organizar una tabla de doble entrada con los cuadrados perfectos, y después someter a su media aritmética a una condición ¿Cuál?
En la imagen puedes ver el resultado de una búsqueda similar, en la que se han marcado con un 1 los cuadrados perfectos pertenecientes a una terna como la propuesta. Si te animas a construir un buscador semejante podrás encontrar muchas más ternas. Ponte a prueba: ¿Con qué otros dos cuadrados forma progresión aritmética el número 10404, cuadrado de 102? Si lo encuentras, nos lo puedes comunicar en forma de comentario.
Para concretar las ternas pedidas hemos recurrido a una exploración sistemática. Es una forma válida de trabajar en Matemáticas (así se encuentran los números primos), pero que alguien puede pensar que es algo perezosa. Podríamos aportar un análisis algo más profundo, pero eso será en una próxima entrada.
lunes, 8 de septiembre de 2008
Cuadrados de bolas
Forma un cuadrado con bolas, situándolas en filas y columnas, las que quieras. Después elimina 10 bolas e intenta reorganizar el resto hasta formar otro cuadrado más pequeño, y verás que resulta imposible, cualquiera que sea el lado del cuadrado que has formado.
Prueba entonces a quitar sólo 6 bolas, y observarás que tampoco puedes formar un cuadrado con las restantes.
Con otros números sí se puede, dependiendo del lado del cuadrado. Por ejemplo, se pueden quitar 7 bolas a un cuadrado de lado 4, y 8 bolas a otro de lado 3.
¿Qué tienen de particular el 6 y el 10 para que ocurra esto?
Descubre más números con un comportamiento similar, o encuentra una propiedad que cumplan todos.
También puedes investigar con una hoja de cálculo, en la que se pueden comparar todos los cuadrados que desees entre sí, sin que nunca aparezca el 6, el 10, y otros que no descubrimos.