viernes, 31 de octubre de 2008

La tabla misteriosa

La tabla misteriosa

En esta tabla están casi todos los primeros números naturales. Lo que ves es sólo un fragmento de otra mayor que puede tener tantas filas y columnas como deseemos.

(1) ¿Cómo se ha generado esta tabla? Si lo descubres (no es difícil) tendrás las demás respuestas casi resueltas.

(2) En esta tabla no están todos los primeros números. ¿Cuáles faltan? ¿Qué característica comparten? (no cuentes el 1, que es un caso especial)

(3) Por el contrario, algunos de ellos están repetidos. Si prolongásemos la tabla se incrementarían las repeticiones. ¿Qué clase de números están repetidos?

(4) Todos los números de la primera columna se pueden expresar como k(k+2), siendo n natural. ¿Admiten expresiones similares las restantes columnas?

(5) Los números de la misma fila pueden descomponerse en factores del tipo n(k-n), siendo n y k naturales y k constante para la misma fila. ¿Puedes concretarlo más?

(6) ¿Qué podemos afirmar de las diagonales descendentes? La primera está formada por impares, la segunda por múltiplos de cuatro, y, en general, todas son sucesiones aritméticas ¿Por qué?

Ya sabes, acertando la primera, las demás caerán fácilmente.

domingo, 26 de octubre de 2008

Conjuntos numéricos idénticos


En algunas cuestiones resulta útil decidir de forma automática si dos conjuntos numéricos son idénticos o no. Por ejemplo, en las tablas de multiplicar de los cuerpos finitos, como Z/Z7, es interesante descubrir si

(a) No existen elementos repetidos en ninguna fila o columna
(b)  Los elementos de las distintas filas son los mismos.

Si escribimos los dos conjuntos en una hoja de cálculo, en filas paralelas, deberemos comprobar cuatro hechos para decidir si los conjuntos son idénticos o no:

 (1)   No existen elementos repetidos en el primer conjunto 
(2)   Tampoco se repiten los del segundo
(3)   Todo elemento del primero ha de pertenecer al segundo
(4)   Todo elemento del segundo ha de pertenecer al primero.

 
Las cuatro cuestiones las resuelve la función CONTAR.SI. Recorremos todo el primer conjunto y mediante esta función contamos las veces que figuran en el segundo. Si esos valores son mayores que 1, es que existen repetidos en el segundo conjunto, y si es 0, es que falta alguno. Lo deseable, pues, es que todos los contadores presenten el valor 1. 


Procedemos de la misma forma, contando las veces que los elementos del segundo conjunto figuran en el primero, y también han de valer 1. Para evitar problemas en las siguientes operaciones que explicaremos, a las celdas vacías también se le debe asignar un 1.

¿Cómo resumimos la situación? Multiplicamos todos los contadores del primer conjunto, y nos ha de resultar la unidad. Ocurrirá lo mismo con el producto de los del segundo, por lo que si multiplicamos ambos productos, obtendremos un criterio para decidir si los dos conjuntos son idénticos: el que el producto final tenga el valor de 1.

Puedes estudiar este proceso en los apuntes interactivos contenidos en http:/www.hojamat.es, en concreto la hoja grupos.ods.

martes, 21 de octubre de 2008

Dándole vueltas (2)

Hoy le damos vueltas a un problema leído en el blog http://problemate.blogspot.com/

El fósil de un número

(Fase provincial de Alicante de la XIX Olimpiada Matemática, 2008)

Dado un número natural N, se multiplican todas sus cifras. Se repite el proceso con el resultado obtenido, hasta obtener un número de una cifra únicamente; a ese número se le llama el fósil de N. Por ejemplo, el fósil de 327 es 8. Hallar el mayor número natural, con todas sus cifras distintas, cuyo fósil sea impar.

La solución la puedes leer en

http://solumate.blogspot.com/2008/09/el-fsil-de-un-nmero.html,

y nosotros le daremos unas vueltas a la idea de “fósil” de un número.

(1) ¿Tienen fósil todos los números naturales?

Te lo puedes plantar en dos pasos:

(a) El algoritmo de multiplicar todas las cifras produce una sucesión estrictamente decreciente y llega a términos de una cifra.

(b) Sólo los números de una cifra son invariantes en el proceso.

(2) Construye un algoritmo de hoja de cálculo tal que dado un número natural,encuentre su fósil. Puedes restringirlo sólo a números de tres o cuatro cifras, pero ten en cuenta que si disminuye el número de cifras no pueden aparecer ceros, que arruinarían el cálculo. En el algoritmo de la imagen, cuando disminuye el número de cifras aparece la unidad, para no desvirtuar el producto.