jueves, 15 de junio de 2017

Descomposiciones múltiples del tipo x^2+ky^2

Últimamente nos han surgido cuestiones sobre descomposiciones en suma de cuadrados. Recordamos dos:

http://hojaynumeros.blogspot.com.es/2016/09/expresion-cuadratica-x2ky2-n.html
http://hojaynumeros.blogspot.com.es/2017/01/numero-de-descomposiciones-en.html

Siguiendo esta línea, hoy recorreremos aquellos números que se pueden descomponer en una suma del tipo x^2+ky^2, con k>1, x>0, y>0 de varias formas distintas. Expresado así, es un problema bastante general, que se presta a muchos casos y subcasos, por lo que sólo se desarrollarán algunos, con el fin de aprender a tratarlos y sacar alguna posible propiedad.

Hay un hecho que vale para todos ellos, y es que si N admite una descomposición de un tipo dado x^2+ky^2, con k>1, si lo multiplicamos por un cuadrado admitirá el mismo número de descomposiciones al menos, luego muchas soluciones que encontremos engendrarán otras al multiplicarlas por un cuadrado.

Caso k=2

Si deseamos encontrar todas las expresiones de un número de la forma x^2+2y^2, nuestra mejor herramienta es la que hemos presentado hace pocas semanas bajo el nombre de Cartesius, hoja de cálculo especializada en productos cartesianos condicionados. Puedes descargarla en versión para Excel y LibreOffice Calc, así como las instrucciones en la dirección

http://www.hojamat.es/sindecimales/combinatoria/herramientas/herrcomb.htm#cartesius

En este caso bastará concretar: 2 sumandos, uno de ellos un cuadrado, el otro doble de un cuadrado, y que la suma de ambos sea igual al número propuesto. Por ejemplo, para saber  cuántas descomposiciones de este tipo permite el número 969, daríamos a Cartesius estas instrucciones:

xtotal=2
xt=1..33
x1=suc(n^2)
x2=suc(2*n^2)
suma=969

La primera exige que sean dos sumandos. La segunda fija un rango de búsqueda de 1 al 33, para que no se nos escape ningún cuadrado inferior a 969, y las siguientes determinan un sumando n^2 y otro 2*n^2. Así se recorrerán todas las posibilidades, que resultan ser cuatro. Si copias esas instrucciones en Cartesius (zona de condiciones) y pulsas el botón Iniciar obtendrás estos cuatro sumandos:



Traducidos a nuestra cuestión, equivalen a las igualdades

969=1^2+2*22^2=13^2+2*20^2=29^2+2*8^2=31^2+2*2^2

No seguiremos por ahí. Nos interesa buscar números con este tipo de propiedad, y podemos dejar Cartesius solo para comprobar. Nos pasamos al VisualBasic de las hojas de cálculo.

Es fácil diseñar una función que recorra todas las posibilidades de suma del tipo x^2+ky^2 para un número dado. El que tenga forma de función nos permite construir tablas para distintos valores, cosa imposible con Cartesius. Proponemos esta:

Public Function numsumacuad(n, k)  ‘Tiene dos parámetros, el número n y k
Dim x, p

p = 0 ‘Iniciamos el contador a cero
For x = 1 To Sqr(n - k) ‘Al estar x elevada al cuadrado, será inferior a una raíz cuadrada
If escuad((n - x ^ 2) / k) Then p = p + 1 ‘Si la diferencia dividida entre k es cuadrado, vale
Next x
numsumacuad = p ‘Contamos las veces
End Function

Esta función no se puede aplicar a 1, pero ya sabemos que no es suma de cuadrados no nulos.

Así podemos formar tablas como esta:


Vemos que entre 20 y 30 solo tienen solución 22, 24 y 27, y esta, doble. Todos los números que admiten al menos una de estas descomposiciones, se podrán representar como suma de tres cuadrados simétricos. Es sólo una curiosidad, pero atractiva. Así, 24=2^2+4^2+2^2

Este número de soluciones, asignando un 0 al 1, está publicada en http://oeis.org/A216278

Destacamos en negrita el intervalo entre 20 y 30.
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 2…

Con la función numsumacuad podemos seleccionar aquellos números que admiten dos representaciones (al menos) distintas del tipo x^2+2y^2. Los primeros son estos:

27, 33, 51, 54, 57, 66, 81, 99, 102, 108, 114, 123, 129, 132, 153, 162, 171, 177, 187, 198, 201, 204, 209, 216, 219, 228, 243, 246, 249, 258, 264, 267, 291, 297, 306, 321, 323, 324, 339, 342, 354, 363, 369, 374, 387, 393, 396, 402, 408, 411, 417, 418, 432, 438, 451, 456, 459, 473, 486, 489, 492, 498,…

Todos los números de la sucesión son compuestos, pues Fermat, Euler y Gauss demostraron que los números primos sólo podían descomponerse como x^2+2y^2 de forma única, y no todos, porque deberían ser congruentes con 1 o 3 respecto al módulo 8.



En esta tabla figuran los primeros números primos que se pueden descomponer de la forma dada, y vemos que sus restos son 1 o 3 módulo 8. Un buen ejercicio es adivinar la descomposición en cuadrados mentalmente: 73=1^2+2*6^2, 89=9^2+2*2^2,…

En este tipo de búsquedas siempre recomendamos el lenguaje PARI como complemento o ampliación. En esta cuestión el código adecuado sería, por ejemplo:

for(n=3,500,p=0;for(x=1,sqrtint(n-2),if(issquare((n - x ^ 2) / 2),p+=1));if(p>1,print1(n,", ")))

Si cambiamos la condición p>1 por p==2 obtendremos los números que admiten exactamente dos descomposiciones del tipo que estamos estudiando:

27, 33, 51, 54, 57, 66, 81, 102, 108, 114, 123, 129, 132, 162, 177, 187, 201, 204, 209, 216, 219, 228, 246, 249, 258, 264, 267, 291, 321, 323, 324, 339, 354, 374, 393, 402, 408, 411, 417, 418, 432, 438, 451, 456, 473, 489, 492, 498,…

Vemos que faltan algunos, como el 99, que admiten más de una descomposición.
En todos estos números se dará la siguiente igualdad

N= a2+2b2=c2+2d2  que equivale a (a+c)(a-c)=2(d+b)(d-b)

De esa identidad se deduce que a y c han de tener la misma paridad, para que coincida con el múltiplo de 2 del segundo miembro, pero entonces (a+c)(a-c) será múltiplo de 4, lo que obliga a que también d y b tengan la misma paridad.

Lo puedes comprobar con los ejemplos.

Algunos de estos elementos son cuadrados

81, 324, 729, 1089, 1296, 2025, 2601, 2916, 3249, 3969, 4356, 5184, 6561, 8100, 9801,…

En ellos se cumple que n2=x2+2y2, o bien (n2-x2)/2=y2, es decir, que (n+x)(n-x)/2=y^2. Podemos interpretar que estos números generan triángulos de catetos enteros cuya área coincide con la de un cuadrado. Por ejemplo, tomamos 1089=33^2. Según nuestra hoja Cartesius admite cuatro descomposiciones del tipo deseado:



Si tomo la segunda, tendré: n=33, x=17, y=20, y se cumple 332=172+2*202, y aplicando los cálculos anteriores, se puede formar el triángulo de lados (33+17, 33-17), es decir 50 y 16, con área 50*16/2=400=202, que efectivamente, es un cuadrado.

Con el primero: (33+11,33-11) se convierte en los lados 44 y 22 de área 44*22/2=484=22^2.

Tipo x^2+3y^2

Este caso ofrece menor interés. Estos son los primeros números que admiten más de una descomposición de ese tipo:

Con más de un caso de sumas de cuadrados

28, 52, 76, 84, 91, 112, 124, 133, 148, 156, 172, 196, 208, 217, 228, 244, 247, 252, 259, 268, 273, 292, 301, 304, 316, 336, 343, 364, 372, 388, 399, 403, 412, 427, 436, 444, 448, 468, 469, …

Los puedes generar con este código PARI o con Cartesius o nuestra función en Visual Basic para Excel.

for(n=4,1000,p=0;for(x=1,sqrtint(n-3),if(issquare((n - x ^ 2) / 3),p+=1));if(p>1,write1("final.txt",n,", ")))

Por ejemplo, 469 se descompone como

469=13^2+3*10^2=19^2+3*6^2

Podemos seguir con otros números de casos. Por ejemplo, con tres o más descomposiciones están:

28, 52, 76, 84, 112, 124, 148, 156, 172, 196, 208, 228, 244, 252, 268, 292, 304, 316, 336, 364, 372, 388, 412, 436, 444, 448, 468, 496,…

Vemos que falta el 469, pero no el 468, que admite tres descomposiciones:
468=62+3*122=152+3*92=212+3*32

Puedes intentar descubrir casos llamativos. Un ejemplo: 2548 es el primero con nueve descomposiciones distintas. Insertamos el desarrollo con Cartesius. Las columnas X4 y X5 son los valores de x e y respectivamente:




Tipo x^2+4y^2

Su interés radica en que produce sumas simétricas de cinco cuadrados. No lo estudiaremos. Tan sólo un ejemplo:

464=10^2+10^2+8^2+10^2+10^2


Tipo 2x^2+3^y2

También este caso presenta el interés de obtener una suma de cinco cuadrados que sea simétrica y con bases alternantes. También damos un ejemplo:

365 =3^2+13^2+3^2+13^2+3^2

La reiteración mata el interés. Es mejor parar aquí y dejar abiertos otros caminos de investigación.

No hay comentarios: