martes, 10 de diciembre de 2013

Divisores cuadrados


Consideremos el conjunto de divisores de un número natural N que son cuadrados perfectos. Sabemos que el mayor de ellos es la parte cuadrada del número

(ver http://hojaynumeros.blogspot.com.es/2011/05/parte-cuadrada-y-parte-libre.html),

a la que designaremos como PC(N). Si descomponemos N en factores primos


para encontrar la parte cuadrada basta elevar a cada factor primo al mayor número par contenido en cada uno de los exponentes, es decir
(2)

Así, por ejemplo, para encontrar la parte cuadrada de 26460=22*33*5*72 bastará truncar cada exponente a un número par, con lo que quedaría PC(26460)= 22*32*72=1764. A la raíz cuadrada de esa parte se le suele llamar Raíz Interna del número N (ver http://hojaynumeros.blogspot.com.es/2011/12/emparedado-de-cuadrados-2.html)

En este caso la raíz interna de 26460 sería 42=2*3*7.

Todo esto lo recordamos para poder estudiar mejor los divisores cuadrados de un número. Se pueden considerar las siguientes afirmaciones:

Los divisores cuadrados de N coinciden con los de su parte cuadrada.

Si k es divisor cuadrado de N, todos sus exponentes en (1) serán pares, pero ninguno sobrepasará al correspondiente en PC(N), luego será también divisor de esa parte cuadrada. Inversamente, todo divisor de PC(N) lo es también de N.

El número de divisores cuadrados de N coincide con el de los divisores de la raíz interna de N.

Esto es así porque si extraemos la raíz cuadrada a todos los divisores cuadrados de N, es claro que permanecerán los mismos factores primos, pero con sus exponentes reducidos a la mitad, que es la misma operación sufrida por la raíz interna.

En el ejemplo elegido, si esa raíz interna es 42, poseerá ocho divisores, por ser igual a 2*3*7 (aplicando la fórmula del número de divisores resultaría (1+1)(1+1)(1+1)=8). Efectivamente, si buscamos todos los divisores cuadrados de 26460 nos resultan estos ocho: 1764, 441, 196, 49, 36, 9, 4 y 1, que son los cuadrados de los divisores de 42: 42, 21, 14, 7, 6, 3, 2 y 1

Existe una correspondencia biyectiva entre los divisores cuadrados de N y los divisores de su raíz interna, de forma que cada uno de los primeros es el cuadrado de otro del segundo conjunto.

Por ejemplo, para N=1200, su parte cuadrada es 400, su raíz interna 20, y se da la correspondencia entre los divisores de 20 y los divisores cuadrados de 20.



Esto nos da, como hemos visto, un procedimiento para contar los divisores cuadrados de un número, pero también para sumarlos, si recordamos la fórmula de la función sigma_2, que suma los cuadrados de los divisores (ver http://hojaynumeros.blogspot.com.es/2011/03/la-familia-de-las-sigmas-2.html)


Aplicamos esa fórmula a la raíz interna. Esto es importante, porque esa raíz determina el número de divisores cuadrados. En nuestro ejemplo lo haríamos así:

SDC(26460)=(2^4-1)/(2^2-1)* (3^4-1)/(3^2-1)* (7^4-1)/(7^2-1)=5*10*50=2500

Comprueba: 1764+441+196+49+36+9+4+1=2500

Si deseas comprobar este resultado con otros números, con este codigo PARI puedes sumar todos los divisores cuadrados:

print(sumdiv(26460,d,d*issquare(d)))

Sustituyes el ejemplo 26460 por otro número cada vez que lo desees.

Con el Basic de las hojas de cálculo también lo puedes calcular mediante esta función:

public function sumdivcuad(n)
dim i,p,a,s

p=1
s=0
for i=1 to sqr(n)
a=i*i
if n/a=n\a then s=s+a
next i
sumadivcuad=s
end function

Comprueba de varias formas que el número 84000 posee sólo seis divisores cuadrados cuya suma es 546. Usa también la fórmula basada en sigma_2 ((2^6-1)/(2^2-1)*(5^4-1)/(5^2-1)=21*26=546)

Como otras variantes de la función sigma, esta suma de divisores cuadrados es una función multiplicativa, por lo que basta definirla para pr, siendo p un factor primo. Para ello, según (2) tomamos como exponente de su raíz interna (r – r MOD 2)/2, con lo que la suma de los divisores cuadrados será




Por ejemplo, la suma de divisores cuadrados de 2048=211 será igual a (2^12-1)/(2^2-1)=4095/3=1365. Comprobamos: 1024+256+64+16+4+1 = 1365.

En el caso particular de que r sea igual a 2 o a 3 la suma de divisores cuadrados será p2+1. Es muy fácil razonarlo.
Otro caso particular se da cuando la raíz interna está libre de cuadrados, tipo RI(N)=p*q*r*s…, la suma buscada será (1+p2)(1+q2)(1+r2)(1+s2)…Sería el caso, por ejemplo, del número 60500, cuya parte cuadrada es 12100 y la raíz interna 110=2*5*11, libre de cuadrados, por lo que la suma de divisores cuadrados de 60500 debería ser (1+22)(1+52)(1+112)=5*26*122=15860. En efecto, los divisores cuadrados de 60500 suman 12100+3025+484+121+100+25+4+1=15860

En la siguiente entrada encontraremos algunos resultados curiosos sobre esta suma.

No hay comentarios: