Las propiedades vistas en la anterior entrada se resumen en un criterio que no vamos a desarrollar aquí, y es que sólo se pueden descomponer en cuadrados los números en los que los factores primos del tipo 4n+3 figuren en su descomposición con exponente par. Gauss fue más allá en esa sección 182, pues dio una fórmula para contar el número de formas diferentes en las que se descompone un número en suma de dos cuadrados con base no negativa:
donde ES significa “mínimo entero igual o superior” y los factores que le siguen se corresponden con los exponentes de los factores del tipo 4n+1 aumentados en una unidad. La fórmula, como advierte Gauss, sólo es válida si los factores del tipo 4n+3 forman un cuadrado perfecto.
Así, por ejemplo, el número 325=52*13 se deberá descomponer en
N=ES((2+1)(1+1)/2)=ES(3*2/2)=ES(3)=3
En efecto, 325=12 + 182 = 62 + 172 = 102 + 152 (tres formas distintas)
Y el número 6664 sólo de una forma, pues 6664 = 23*72*17 y aplicando la fórmula nos daría
N=ES(1+1)/2 = ES(1)=1, y su descomposición única es 6664=422+702
Actualmente se prefiere considerar todas las sumas de cuadrados posibles, incluyendo bases negativas y teniendo en cuenta el orden. Esto multiplica por 8 el número de soluciones cuando x es distinto de y y ambos son no nulos, y por 4 en caso contrario. Así, el 13 presentaría ocho soluciones:
13= 22+32 = (-2)2+32 = 22+(-3)2 = (-2)2+(-3)2 = 32 +22 =(-3)2 +22 = 32 +(-2)2 = (-3)2 +(-2)2
Y el 16, cuatro: 16 = 42+02 = (-4)2+02 =02 + 42 = 02 + (-4)2
Igualmente, 8 presentaría también 4: 8 = 42+42 = (-4)2+42 =42 + (-4)2 = (-4)2 + (-4)2
¿Por qué complicar así la cuestión? Lo veremos en la siguiente entrada.