jueves, 14 de junio de 2018

Números piramidales centrados (4/4)



Otros números piramidales centrados


Hexagonales

Con estos números, como veremos, el inicio del estudio seguirá un camino más simple:

Partimos de los poligonales hexagonales centrados:

1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387, 1519, 1657, 1801, 1951, 2107, 2269, 2437, 2611, 2791, 2977, 3169, 3367, 3571, 3781, 3997
(http://oeis.org/A003215

Y

http://hojaynumeros.blogspot.com.es/2018/01/poligonales-centrados-2.html)
En esta entrada nuestra incluimos su expresión, que es una diferencia de cubos consecutivos


Por tanto, si para construir los piramidales debemos ir formando las sumas parciales, resultarán cubos. En efecto:

1, 1+7=8, 1+7+19=27, 1+7+19+37=64

Luego la sucesión será:

1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167,…

En el boceto siguiente está representado el número 27, que a su vez contiene el 7 y el 1, en sus tres capas, luego 27=1+1+6+1+6+12



Los términos de la sucesión claramente son cubos. No hay que usar interpolador para verlo. Si también acudimos a la fórmula de Deza lo comprobaremos, para n=6




Así que estos números, además de ser piramidales centrados, representarán una figura cúbica. Aclara mucho la equivalencia si vas tomando grupos de tres unidades en la imagen anterior y te los imaginas alineados en una trama cúbica:



Al coincidir estos números con los cubos, todas sus propiedades se desprenderán de ese carácter, lo que les quita interés.

Suma de grupos de impares consecutivos

Añadimos esta propiedad porque se puede interpretar como un número trapezoidal. Cada número heptagonal centrado equivale a la suma de uno de estos grupos:

{1}, {3, 5},{7, 9, 11}, {13, 15, 17, 19},…

1=1
8=3+5
27=7+9+11
64=13+15+17+19

Las sumas se pueden representar mediante trapecios. Por ejemplo, la última formaría esta imagen:



Para comprobarlo algebraicamente, usaremos, como en casos anteriores, los números triangulares. Sabemos que la suma de impares equivale al cuadrado de su número, pero estos grupos se han ido eligiendo siguiendo los triangulares, por lo que su valor coincidirá con la diferencia de cuadrados de dos triangulares consecutivos. Así:


Heptagonales

Partimos de los poligonales centrados de siete lados

1, 8, 22, 43, 71, 106, 148, 197,… http://oeis.org/A069099

Acumulamos:
1, 1+8=9, 9+22=31, 31+43=74,…y obtenemos:

1, 9, 31, 74, 145, 251, 399,…

Están publicados en http://oeis.org/A004126

Su expresión es fácil de obtener con la fórmula de Deza:



Propiedades

Como suma de triangulares

Casi todos los números figurados presentan relaciones sencillas con los números triangulares. En este caso es:

El piramidal heptagonal centrado de orden n equivale a la suma de n triangulares comenzando por T(n)

Por ejemplo:
31=6+10+15
74=10+15+21+28

Para el caso n basta recordar que la suma de los primeros números triangulares equivale a n(n+1)(n+2)/6, luego la suma de sólo cuatro será la diferencia entre la suma de los 2n-1 primeros menos la suma de los n-1 primeros. Lo desarrollamos:

(2n-1)2n(2n+1)/6-(n-1)n(n+1)/6

Simplificando en Wolfran-Alpha:



Obtenemos:



Coincide con la expresión obtenida más arriba, luego la propiedad es verdadera.


Fórmula combinatoria

La propiedad anterior se puede expresar así:


Octogonales

Los poligonales octogonales centrados, que no llegamos a estudiarlos en este blog, equivalen a los cuadrados de los números impares, como puedes ver en OEIS:










También los puedes recorrer con nuestra calculadora Calcupol

(http://www.hojamat.es/sindecimales/aritmetica/herramientas/herrarit.htm#figurados)

Eliges el tipo Centrado de orden 8



Escribes un 1 en pantalla y vas pulsando la tecla PROX, con lo que aparecerán en pantalla los cuadrados de los impares.

Acumulamos esos cuadrados mediante sumas parciales

1+9=10
1+9+25=35
1+9+25+49=84

Obtendremos la sucesión

1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341,…(http://oeis.org/A000447)

Estos serán los piramidales octogonales centrados.

De la fórmula de Deza se deduce:



También se puede escribir como



Se puede comprobar:

PIRC8(3)=3*5*7/3=35;  PIRC8(4)=4*7*9/3=84

Coincidencia con tetraedros

Si aplicamos la fórmula obtenida a los números impares nos resultará:



Los números combinatorios de orden 3 coinciden con los piramidales triangulares o tetraedros.

http://hojaynumeros.blogspot.com.es/2017/04/numeros-piramidales-2-tetraedros.html

Así que estos estos octogonales que estamos estudiando coinciden con los tetraedros en los lugares impares:

Piramidales octogonales centrados:

1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770,…

Piramidales triangulares:

1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286, 364, 455, 560, 680, 816, 969, 1140, 1330, 1540, 1771, 2024, 2300, 2600, 2925,…

Cada dos de estos coinciden con los de arriba.

Este tema se ha alargado mucho. Es el momento de cortar y dejar el resto para investigar.

jueves, 7 de junio de 2018

Números piramidales centrados (3/4)


Piramidales pentagonales centrados


En las entradas anteriores de este blog (puedes consultarlas pulsando en la frase Entradas antiguas de la parte inferior de este texto) estudiamos números piramidales centrados de tres dimensiones con tres o cuatro lados. En esta seguiremos aumentando el número de lados a 5, pero nos limitaremos a una relación esquemática de su construcción, que ya ha sido explicada anteriormente y suponemos que bien entendida, y añadiremos alguna propiedad interesante de cada tipo.


Formación

Lo explicamos de forma esquemática, pues es un procedimiento que hemos desarrollado anteriormente. Insertamos enlaces para una mejor comprensión. Procederemos de la misma forma en los siguientes tipos.

Tomamos los números  poligonales pentagonales centrados:
1, 6, 16, 31, 51, 76, 106, 141, 181, 226, 276, 331, 391, 456, 526, 601, 681, 766, 856, 951, 1051, 1156, 1266, 1381, 1501, 1626, 1756, 1891, 2031, 2176, 2326, 2481, 2641, 2806, 2976,…

http://oeis.org/A005891

http://hojaynumeros.blogspot.com.es/2018/01/poligonales-centrados-2.html

Sobre ellos acumulamos sumas parciales

1, 1+6=7, 1+6+16=23, 1+6+16+31=54,…

Y nos queda

1, 7, 23, 54, 105, 181, 287, 428, 609, 835, 1111, 1442, 1833, 2289, 2815, 3416, 4097, 4863, 5719, 6670, 7721, 8877, 10143,…http://oeis.org/A004068

Extraemos la expresión genera con nuestro interpolador (ver entradas anteriores):



Copiamos los coeficientes de abajo para obtener el polinomio interpolador, y resulta:

P(x)=1+6(x-1)+5(x-1)(x-2)+5(x-1)(x-2)(x-3)/6

Simplificamos en la página de WolframAlpha:



O bien


Es decir:



A partir de la fórmula de Deza (ver entrada anterior) también se obtiene:





Puedes ir engendrando así los términos de la sucesión o usar nuestra calculadora Calcupol, ya presentada en la anterior entrada. Ahora cambiamos el método. Ábrela y concreta en su parte derecha que deseas usar piramidales centrados y marca 5 como orden:



Después escribe un 1 en pantalla y ve usando la tecla PROX paso a paso, y obtendrás la sucesión 1, 7, 23, 54, 105, 181, 287,…Después, con la tecla ANT los puedes recorrer descendiendo hasta el 1. También puedes encontrar un término más alejado. Por ejemplo, con la secuencia de teclas 5 PIRC 30 =  obtendrás el término 30, que resulta ser  22505. Si ahora usas PROX y ANT puedes descubrir los términos más cercanos a él.

Propiedades de estos números

Si los piramidales cuadrados centrados los interpretamos como octaedros, estos pentagonales los podemos convertir en decaedros, es decir en poliedros de diez caras. Así lo interpreta la sucesión de OEIS A004068, como ves en su inicio:

A004068 Number of atoms in a decahedron with n shells.
0, 1, 7, 23, 54, 105, 181, 287, 428, 609, 835, 1111, 1442, 1833, 2289, 2815, 3416, 4097, 4863, 5719, 6670, 7721, 8877, 10143, 11524, 13025, 14651, 16407, 18298, 20329, 22505, 24831, 27312, 29953, 32759, 35735, 38886, 42217, 45733, 49439,…

Como es una cuestión geométrica y el sentido de la palabra decaedro es ambiguo, dejamos esta interpretación en este punto.

Otra interpretación de la fórmula

La expresión general del valor de estos números se puede escribir de otra forma:



Esta, a su vez equivale a


Llegamos a algo interesante, y es que la fórmula se reduce a un cubo y a un número combinatorio.

Relación con la Combinatoria

La última expresión de la fórmula se puede interpretar como una diferencia entre combinaciones con repetición de n elementos tomados de 3 en 3 y las combinaciones de n+1 elementos también de 3 en 3.

Esta consideración nos lleva a una interpretación combinatoria similar a otra que descubrimos para los piramidales centrados de 4 lados.

a(n+1) equivale al número de tripletas (w,x,y) con términos comprendidos en {0,...,n} y tales que x+y>=w. Esta propiedad también es debida a Clark Kimberling.

Antes de razonar nada, lo desarrollaremos mediante nuestra herramienta Cartesius, que construye productos cartesianos condicionados
(http://www.hojamat.es/sindecimales/combinatoria/herramientas/herrcomb.htm#cartesius)

Usaremos este planteo para el caso n=3:

En la primera línea pedimos un producto de tres factores. Después, que pertenezcan al intervalo (0,..3) y, finalmente, que el primero sea menor o igual que la suma de los otros dos.

El resultado es igual a 54 casos, que es el cuarto término de la sucesión. Veamos en detalle los valores de x1:

El valor x1=0 aparece sin restricciones, ya que es menor o igual que cualquier otro elemento. En total 16 veces:



El valor x1=1 ya tiene una restricción, que es (1, 0, 0), luego se presentará 16-1 veces:


De igual forma, x1=2 aparece 16-3=13 veces, donde 3 son las combinaciones que forman las excepciones: (2,0,0), (2,1,0) y (2,0,1)



Por último, el 3 sólo aparecerá en 16-6=10 casos





Se ve, y se puede generalizar fácilmente, que lo que se le va restando a cada 16 un número triangular:

16+16-1+16-3+16-6=64-1-3-6=54

Para n=4 obtendríamos:

5^3=125, luego la expresión que acabamos de obtener se convertiría en
25+25-1+25-3+25-6+25-10=125-(1+3+6+10)=105, como era de esperar. Los números triangulares representan las combinaciones de dos en dos que representan a las excepciones.

La suma de triangulares equivale al número piramidal triangular o tetraedro,  tal como puedes comprobar en nuestra entrada

http://hojaynumeros.blogspot.com.es/2017/04/numeros-piramidales-2-tetraedros.html

En ella vemos que equivale a un número combinatorio


Ajustando índices nos queda la expresión ya vista para los piramidales que estamos estudiando:



Así que la propiedad es cierta.

Todo este estudio nos da otra interpretación geométrica para estos piramidales centrados de orden 5, y es que son la diferencia entre un número cúbico e lado n y un tetraedro de lado n-1.


Suma de valores de un polinomio

Traducimos una propuesta de Reinhard Zumkeller, Nov 11 2012:

Otra expresión para estos números es


En efecto, si sumamos estos términos, obtenemos los piramidales centrados pentagonales:



Para demostrarlo recordemos que la suma de n naturales es n(n+1)/2 y la de sus cuadrados n(n+1)(2n+1)/6. Por tanto, al sumar n^2+nk+k^2 obtendremos:

 PIRC(5,n)=n(n+1)(2n+1)/6-n*n*(n+1)/2+n*n^2

Lo simplificamos en la página de WolframAlpha y nos queda comprobado:


Volvemos a la expresión inicial.