lunes, 13 de marzo de 2017

Sumas de cuadrados con diferencias simétricas


Preparando unos cálculos sobre fechas en Twitter, me he encontrado con desarrollos dobles en suma de tres cuadrados, cuyas bases presentan diferencias simétricas en ambas sumas. El primer ejemplo fue el de 6/1/17, que escrita como 6117 se descompone así:

6117=(46-6)^2+46^2+(46+3)^2
6117=(44-3)^2+44^2+(44+6)^2

En las dos sumas las diferencias son las mismas, 3 y 6, pero situadas de forma simétrica.

Tres días más tarde, el 9/1/17, me encontré con que 9117 presentaba una propiedad similar:

9117=(56-6)^2+56^2+(56+3)^2
9117=(54-3)^2+54^2+(54+6)^2

Decidí entonces estudiar esta situación, que no parece darse a menudo. El que estos dos, 6117 y 9117 aparecieran tan seguidos pudo ser una casualidad. Después he visto que se encuentran más de los que creía.

Planteamiento del problema

En esta situación intervienen cuatro parámetros: las diferencias (en el ejemplo 3 y 6), a las que asignaremos las variables a y b, el número total (6117 o 9117 en nuestro ejemplo), al que llamaremos N, y el desplazamiento que existe entre los dos cuadrados centrales de la suma, que representaremos con la letra m. En ambos ejemplos el desplazamiento es de 2 (46-44 o 56-54). Con estos convenios, nuestro problema se puede plantear así:

(x-a)2+x2+(x+b)2 = (x+m-b)2+(x+m)2+(x+m+a)2

Se observa enseguida que aquí se pueden simplificar bastantes términos y, en efecto, la ecuación queda así:

(4a-4b+6m)x = m(2b-2a-3m)

Como, según hemos comprobado en los ejemplos, el valor de x no depende del de m, la única solución es que ambos paréntesis sean nulos, lo que nos lleva a que


Esta relación supone dos condiciones:

b-a ha de ser múltiplo de 3, es decir, b=a+3k (en los ejemplos, 3 y 6 la cumplen)

m ha de ser par (en los ejemplos m=2)

Si no lo ves claro con la variable x, aquí lo tienes con dos enteros p y q, p<q, a<b:

(p-a)^2+p^2+(p+b)^2 = (q-b)^2+q^2+(q+a)^2
3q^2-3p^2=-q(2a-2b)+p(2b-2a)
3(p+q)(q-p) = (p+q)(2b-2a)
3(q-p)=2(b-a)

Llegamos a la misma conclusión.

Para fijar mejor el problema suponemos que a<b y que las sumas no contienen sumandos nulos.

Relación de las sumas con N

Volvemos a una de las sumas equivalentes:

(x-a)2+x2+(x+b)2 = N

Para valores dados de a y de b, será posible despejar x en la ecuación, y así relacionarla con N. Simultáneamente descubriremos qué condiciones ha de cumplir N para que x sea entero.

Simplificando y despejando x llegamos a


a-b es múltiplo de 3, según vimos anteriormente, luego el radicando será equivalente a 9 veces un cuadrado. Pues ya tenemos la condición que ha de cumplir N:


Representamos por p2 un cuadrado adecuado para que se verifique la igualdad.

Si en cada caso particular sustituimos a y b por su valor, podremos saber si N puede presentar o no, una suma con diferencias simétricas.

Volvemos a nuestros ejemplos, en los que a=3, b=6 y m=2. Si sustituimos en la condición anterior nos resulta que


Esto también obliga a que N (en este caso) sea múltiplo de 3.

Hemos aplicado esta condición a los números comprendidos entre 5000 y 10000 y ahí han aparecido nuestros conocidos 6117 y 9117:



De forma simultánea, hemos despejado x, con lo que comprobamos que al 6117 le corresponde el 44, como ya sabíamos, y al 9117 el 54.

No es de extrañar que las soluciones de x hayan resultado consecutivas. En realidad, para cada valor de x podemos encontrar N mediante un polinomio de segundo grado. En el ejemplo sería:

N=(x-3)2+x2+(x+6)2 = 3x2+6x+45

Así que para cada par de valores a y b, los valores de N presentan una relación cuadrática con x. Si tomo valores de N más pequeños, para que x comience en 1, y construyo un gráfico, se percibe claramente la relación cuadrática:


Puedes ir comprobando, en otros valores de la tabla, si se cumple la condición encontrada y si x tiene el valor esperado.

Valores de N con esta propiedad

En principio, no todos los números naturales tienen por qué presentar esta equivalencia de sumas. Por ejemplo, 4258 no la posee. ¿Cómo podíamos encontrar los números que admiten esta descomposición para valores adecuados de a, b y m?

La búsqueda de números con la propiedad de simetría se puede basar en recorrer, para cada uno, los valores posibles de a y b, y en lugar de usar m, apoyarnos en los criterios estudiados en párrafos anteriores.

Si consideramos, por ejemplo, que b>a, es claro que b no puede sobrepasar la raíz cuadrada de N, y a, menor que b, de la mitad de esa raíz, ya que ambos se suman. Se podía estudiar una acotación más fuerte, pero esta no nos retrasa mucho. Para cada valor de a y b se estudia si se cumple la condición para N, y después un pequeño ajuste para que las bases de los cuadrados sean todas no negativas.

Hemos creado una función tal que a cada valor de N le hace corresponder la palabra “NO” si no presenta la simetría buscada, o una cadena con los valores de a, b, x y m en caso afirmativo.
Su código es el siguiente:

Public Function essumasim(n) As String
Dim a, b, r, m, p, q, d
Dim es As Boolean
Dim s$

es = False ‘variable que controla si se ha encontrado una solución
a = 1
r = Sqr(n)
s$ = ""
While a <= r / 2 And Not es ‘la variable a no sobrepasa la mitad de la raíz de N
b = a + 1
While b <= Sqr(r ^ 2 - a ^ 2) And Not es ‘acotación para b
q = (3 * n - 2 * a ^ 2 - 2 * b ^ 2 - 2 * a * b) / 9 ‘condición para que exista simetría
If escuad(q) Then
q = (a - b + Sqr(q * 9)) / 3 'valor de x
d = (b - a) * 2 / 3 'desplazamiento
If q + d - b >= 1 Then es = True: m = a: p = b 'evita un sumando negativo o cero
End If
b = b + 1
Wend
a = a + 1
Wend
If es Then essumasim = Str$(m) + ", " + Str$(p) + ", " + Str$(q) + ", " + Str$((p - m) * 2 / 3) Else essumasim = "NO" ‘salida de la función, o un NO o las variables deseadas
End Function

Si aplicamos esta función a los primeros números nos damos cuenta de que existen con simetría más de los esperados. Los primeros son los siguientes (hemos añadido los cuatro parámetros a su derecha).




Los primeros valores con descomposición simétrica de este tipo son:

62, 89, 101, 122, 134, 146, 150, 161, 173, 185, 189, 203, 206, 209, 218, 230, 234, 248, 254, 257, 266, 269, 270, 278, 281, 285, 299, 305, 314, 317, 321, 326, 329, 338, 341, 342, 347, 356, 357, 362, 374, 377, 378, 386, 389, 398, 401, 404, 405, 414, 419, 422, 425, 426, 434, 437, 441, 446, 449, 458, 461, 467, 470, 474, 477, 485, 488, 489, 494, 497,…

Por ejemplo, el 62 presentará las diferencias 1 y 4, un valor central de 3 y un desplazamiento de 2. Lo comprobamos:

(3-1)^2+3^2+(3+4)^2 = 4+9+49 = 62
(5-4)^2+5^2+(5+1)^2 = 1+25+36 = 62

Obtenemos los dos desarrollos con diferencias simétricas, tal como esperábamos.

Los que no aparecen en la tabla, o bien no admiten descomposición en suma de tres cuadrados, como le ocurre al 40, bien las admiten sin simetría o si son simétricas las diferencias, una de ellas es nula.

En el caso del 69 admite dos sumas, pero sus diferencias no son simétricas:

(2-1)^2+2^2+(2+6)^2 = 1+4+64 = 69
(4-2)^2+4^2+(4+3)^2 = 4+16+49 = 69

Otro número, el 114, presenta diferencias simétricas, pero una es nula. Por eso no se incluye en la lista:

114=(7-3)^2+7^2+(7+0)^2
114=(5-0)^2+5^2+(5+3)^2

Versión en PARI

Esta sucesión estaba inédita, y la hemos publicado en OEIS mediante este código en PARI:

is_sym_sum(n)=local(x,e=0,a,b,p);x=1;while(x^2<n\3&&e==0,a=1;while(x^2+(x+a)^2<n&&e==0,z=n-x^2-(x+a)^2; if(issquare(z),z=sqrtint(z);b=z-x-a;if(b>a,p=1;while(p^2<=n/3&&e==0,if(p^2+(p+b)^2+(p+a+b)^2==n,e=1);p+=1)));a+=1);x+=1);e
for(i=1,1000,if(is_sym_sum(i),print1(i,",")))

Sigue a misma metodología organizada de otra forma.

La puedes consultar en la dirección http://oeis.org/A282241

Nos alegra haber podido profundizar en este tema, pues no hemos encontrado un estudio similar.

jueves, 2 de marzo de 2017

Números piramidales(1) Definiciones y fórmulas.


Repaso de los números poligonales

Los números piramidales son una extensión natural de los poligonales, por lo que puede ser adecuado comenzar con un repaso de estos. Lo más importante que hay que recordar ahora es su formación recurrente. Por ejemplo, los triangulares se forman añadiendo un lado nuevo a los ya formados en el anterior triangular, como queda claro en la imagen:



Es decir, que

t1 = 1 = 1
t2   = 1+2 = 3
t3  = 1+2+3 = 6
t4  = 1+2+3+4 = 10

En general, Tn+1 =Tn+n, lo que convierte a los triangulares en sumas de números consecutivos. Por eso Tn=1+2+3+…+n=n(n+1)/2.

Hemos preparado una hoja de cálculo con Calcupol, una calculadora especializada en números figurados, que puedes descargar desde

http://www.hojamat.es/sindecimales/aritmetica/herramientas/herrarit.htm#figurados

En ella, con la tecla POL puedes encontrar el k-ésimo número triangular. Por ejemplo, con la secuencia de teclas  3   POL   12   = encontrarás el triangular número 12, que resulta ser 78, como se ve en la imagen:



El presentar la calculadora en este momento se justifica porque la vamos a usar en toda una serie de entradas. Otra utilidad que tiene es la de identificar si un número es de un tipo dado o no. Observa la celda Tipos. Si fijas el tipo en Triangular (usa la lista desplegable) podrás averiguar si el número que escribas en pantalla es o no triangular, con la tecla ES, o bien encontrar el próximo o el anterior con PROX y ANT. Ya las iremos viendo. Fija el tipo en triangular, escribe 75 y pulsa la tecla ES. Te responderá que no es de ese tipo y en pantalla aparecerá un cero. Si hubieras escrito 78, te devolvería 12, que es su número de orden, o lado.

De igual forma se definen los números cuadrados, pero ahora, a cada elemento le añadimos dos lados, formando lo que se llama un gnomon, de fórmula 2n+1:



En la figura se observa la generación de cada número cuadrado:

C1 = 1 = 1
C2 = 1+3 = 4
C3 = 1+3+5 = 9
C4 = 1+3+5+7 = 16

Los primeros números cuadrados son: 1, 4, 9, 16, 25,… como bien sabemos, y, según se acaba de ver, son suma de impares consecutivos. Fija la calculadora en el tipo Cuadrado. Escribe un 1 en pantalla y ve pulsando reiteradamente la tecla PROX. Obtendrás esa secuancia 1, 4, 9, 16, 25,… En la imagen se había llegado al 36:



El resto de poligonales se define de la misma forma que los cuadrados y los triangulares, como números que forman pentágonos, hexágonos, o de más lados. Basta ir añadiendo n-2 lados nuevos, 3 para los pentagonales, 4 para los hexagonales, y así con los demás.


Escribe en la calculadora que el tipo es Poligonal y el orden 5 y podrás analizar los pentagonales. Con la tecla PROX (o la ANT) puedes recorrerlos. Comprueba que los primeros pentagonales son 1, 5, 12, 22, 35, 51, 70, 92,… En la imagen se ha llegado, con la tecla PROX, al siguiente a 92, que es el 117




Con este repaso ya estamos en condiciones de comenzar el estudio de los números piramidales.


Números piramidales

Al igual que los poligonales se generan añadiendo a cada uno de ellos lados nuevos, los piramidales se forman mediante números poligonales nuevos que van haciendo el papel de bases de una pirámide.

Tomemos, por ejemplo, los números triangulares, 1, 3, 6, 10,… Imaginemos que comenzamos por 1 (siempre se comienza con él), que hará el papel de vértice, y después le adosamos como base el siguiente triangular, 3, y después el siguiente, 6, y así hasta que obtengamos el orden deseado. Lo puedes ver en la imagen:


Para ver otras imágenes similares para los casos de cuadrados, pentagonales o hexagonales entra en Mathword:

http://mathworld.wolfram.com/PyramidalNumber.html

A los números poligonales de orden 3 (triangulares) les llamaremos tetraédricos, a los de orden 4, piramidales cuadrados, y al resto, pentagonales, hexagonales, y así hasta el orden que deseemos. Usamos la palabra orden para no crear confusión con la calculadora que ofrecemos. Llamaremos lado al número de poligonales que se acumulan.

Con nuestra calculadora calcupol podemos seguir cualquiera de estas sucesiones. Por ejemplo, para ver los piramidales hexagonales, fijamos el tipo en Piramidal y el orden en 6. Escribimos un 1 en pantalla y vamos pulsando la tecla PROX. Aparecerán los piramidales 1, 7, 22, 50,…En la imagen hemos llegado hasta 372:


Puedes comprobar los resultados obtenidos en la dirección http://oeis.org/A002412

Si tienes un piramidal en pantalla, como puede ser el hexagonal 715, de lado 10, con la secuencia de teclas  –  ANT  =  puedes restarle el anterior, de lado 9, y te dará 190, que es precisamente el poligonal de tipo 6 y lado 10. Para comprobarlo usa la secuencia de teclas  6   POL  10, y te resultará 190.

Ya estamos en condiciones de sintetizar la generación de los números piramidales:

El número piramidal de orden k y lado n equivale a la suma del piramidal de idéntico orden y un lado menos y el poligonal de mismo orden y lado.

Si nombramos los piramidales como PIR y los poligonales como POL, se podría expresar así:

PIR(N,K)=PIR(N-1,K)+POL(N,K)

Por ejemplo (lo puedes ir calculando con Calcupol): El octavo piramidal hexagonal es 372, y el poligonal hexagonal de lado nueve es 153. Si los sumamos obtenemos el noveno piramidal hexagonal, ya que 372+153=525, que es el piramidal esperado.

Fórmula

Existe una expresión general para calcular PIR(N,K). De todas las versiones publicadas nos quedamos con la siguiente:


Es un polinomio de tercer grado, al igual que los poligonales se expresan con uno de segundo

(ver http://www.hojamat.es/sindecimales/aritmetica/teoria/teorarit.pdf)

Tienes una demostración en http://oeis.org/wiki/Pyramidal_numbers

Lo comprobamos con 372, pirámide hexagonal de lado 8:

PIR(8,6)=(3*64+512*4-8*1)/6=2232/6=372

Con un poco de Álgebra, se puede extraer de esta fórmula el factor n(n+1)/2, que es, precisamente, el número triangular del mismo lado que el piramidal que estamos calculando. La fórmula quedaría entonces así:


Lo comprobamos: El vigésimo piramidal octogonal, según Calcupol, es 8190. El triangular del mismo lado 20, 210. Aplicamos la fórmula:

8190=210*(20*6-3)/3=210*117/3=24570/3=8190

Nos hemos detenido mucho en el repaso de los números poligonales y en el uso de la calculadora Calcupol, por lo que se deja para la siguiente entrada de la serie el estudio de los números piramidales de orden 3, o tetragonales.